The IBM 2003 1xRT speech-to-text system

George Saon, Geoffrey Zweig, Brian Kingsbury and Lidia Mangu

Outline

- System diagram
- Speech/non-speech segmentation
- Front-end processing
- Acoustic models
- Speaker compensation
- Static graph decoding
- Conclusion

System diagram

Speech/non-speech segmentation

Viterbi decoding for a two word vocabulary

- Each type of segment is modeled by a 5-state HMM
- Segment insertion penalty controls number and duration of segments
- Speech (resp. non-speech) GMMs tied across all states in a model
- GMMs obtained by bottom-up clustering of the SI Gaussians (123 for speech and 12 for silence)
- Hypothesized speech segments extended by additional 30 frames
- Overlapping segments are merged together

Segmentation performance

Number of segments:

Reference	AT&T*	IBM
9050	9012	6661

Word error rate:

29.0%	29.2%	28.7%	SA decoding
49.5%	49.5%	49.3%	SI decoding
IBM	AT&T	Reference	

Speed: 0.008xRT (3m3s)

*Courtesy of Andrej Ljolje

Front-end processing

Two types of features:

- 24-dim MFCCs for segmentation and speaker independent decoding
- 13-dim VTL-warped PLP cepstra for speaker adapted decoding

Common characteristics:

- 25ms Hamming window, 10ms shift
- Spectral flooring by adding 1 bit prior to the Mel binning
- Periodogram averaging (Welch smoothing)
- 60-dim through LDA+MLLT Every nine consecutive frames are concatenated and projected down to

Acoustic models

- acoustic context only Phonetic questions within an 11-phone window with left cross-word
- covariance Gaussians Leaves of the decision tree are modeled by at most 128 diagonal
- Number of Gaussians determined using BIC

Gaussians 168K	leaves 4.0K	Number of SI
158K	4.6K	SA

- SAT models trained through implicit-lattice MMIE [IBM RT'02]
- hours of Switchboard cellular Training data: 247 hours of Switchboard, 18 hours of Callhome and 18

Speaker compensation

- Alignment-based VTLN:
- 21 warp scales allowing for a $\pm 20\%$ stretching of the frequency axis
- Selectively score vowels
- Jacobian compensation
- Uses at most 60 seconds of test data per speaker
- 2. Alignment-based FMLLR (1 transform):
- Maps the VTL-warped test data to a canonical SAT feature space
- Statistics accumulated in single precision
- 3. Alignment-based MLLR (1 transform):
- ullet Statistics accumulated in single precision (necessary to scale means by standard deviations to avoid overflow)

All compensation steps use the Intel MKL library extensively

Speaker compensation performance

Runtimes and RTFs:

0.048×RT	17m39	MLLR
0.038×RT	13m59	FMLLR
0.013×RT	5m10	VTLN
RTF	Runtime	

Word error rates:

	_		10	
MLLR	FMLLR	VTLN	SI	
30.1%	30.6%	34.1%	50.3%	RT'02
29.0%	29.7%	32.9%	49.5%	RT'03

Effect of improved SI:

SI	
49.5%	1xRT
37.1%	2xRT
	l 49.5%

Static graph decoding

- SI and SA decodings operate on static FSM graphs
- Backoff LM expansion at the HMM level (2-gram for SI, 4-gram for SA)
- Arc minimization for cross-word context [Zweig, Yvon & Saon'02]
- State determinization and minimization [Mohri, Perreira & Riley'00]

23.9M	1.7M	arcs
9.6M	0.6M	states
3.3M	0.2M	ngrams
SA	SI	Number of

3M words BN, 7M words English Gigaword and 1M words from BBN LM training data: 3M words Switchboard, 59M words web scripts UW,

LM expansion

Cross-word arc minimization

Factored graph

Decoder characteristics

- State (rank) pruning as opposed to beam pruning (500 active states/frame for SI, 3500 active states/frame for SA)
- Hierarchical Gaussian evaluation decoupled from search
- Components clustered to 2048 Gaussians. For each frame, evaluate only the Gaussians which map to the top N clusters. ($N{=}20$ for SI and N=110 for SA)
- Streaming SIMD extension 2 instructions of the Pentium 4 processor
- Gaussians sorted by top-level cluster
- Handling of layers of null states (observations emitted on states not arcs)
- Search errors due to pruning:

28.4%/1.1xRT	29.0%/0.628×RT	SA S
40 4%/1 2×RT	49 5% /0 107×RT	SI

RT'02 WER-RTF performance (search only)

Conclusion

- Two-pass decoding strategy with 3 adaptation passes inbetween
- Static graph decoding is the only way for an accurate 1xRT system
- Single transform adaptation is limited
- No consensus, no rover
- 0.2xRT loss due to I/O